
Chapter 15

Integral of Vector Fields

15.1 Line Integrals

Line integral(Path integral) of a scalar function

Let C be a C1- curve parameterized by x(t) = r(t) = (x(t), y(t), z(t)) : [a, b] →
C ⊂ R

3.Let P : a = t0 < t1 < · · · < tk = b be the partition of [a, b] and t∗i be

any point between ti−1 and ti, for i = 1, · · · , n. Then we consider the Riemann

sum of a continuous function f : C → R :

k
∑

i=1

f(x(t∗i ))∆si =

k
∑

i=1

f(x(t∗i ))‖x(ti)− x(ti−1)‖.

a = t0 t1 ti−1 ti tk = b

x

x(t0)

x(t1)
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b
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Figure 15.1: Riemann sum over a path
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As ‖P‖ approaches 0 the sum approaches

∫

C
f(x, y, z)ds = lim

k→∞

k
∑

i=1

f(x(t∗i ))∆si,

where ∆si is the length of i-th segment of the curve x(t). (If f denotes the den-

sity of a wire lying on the image of C, then the Riemann sum is approximately

the total mass of the wire.) Here s(t) is the arc length parameter:

s(t) =

∫ t

0
‖v(τ)‖dτ

Definition 15.1.1. If C is a C1-curve parameterized by x(t) on I = [a, b]

lying in R
3 and f is defined over a region containing the image of x. Then

f ◦x is real valued function defined on I. We define the line integral - path

integral of f over C as:

∫

C
f(x, y, z)ds =

∫ b

a
f(g(t), h(t), k(t))‖v(t)‖dt =

∫ b

a
f(x(t))‖x′(t)‖ dt.

If f = 1, then
∫

C ds is the length of C.

Example 15.1.2. The scalar function f(x) may represent

(1) electric charge density along the wire represented by x(t); Then the line

integral is total charge along the wire.

(2) density of the wire x(t). Then the line integral is total mass of the wire

Example 15.1.3. Find path integral of f(x, y, z) = x2+y2+z2 over C where

x(t) = (cos t, sin t, t), t ∈ [0, 2π].

sol. Since x′(t) = (− sin t, cos t, 1), the line integral is

∫

C
f ds =

∫ 2π

0
f(x(t))‖x′(t)‖ dt

=

∫ 2π

0
(cos2 t+ sin2 t+ t2)‖(− sin t, cos t, 1)‖ dt

=

∫ 2π

0
(1 + t2)

√
2 dt

=
√
2
(

2π + 8π3/3
)

.
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Example 15.1.4 (Tom Sawyer’s fence). Find the area of fence built along a

path on Tom’s yard parameterized by x = x(t) = (30 cos3 t, 30 sin3 t), t ∈ [0, π]

whose height is f(x, y) = 1 + 3y. The unit is a foot.

sol. x(t) = (30 cos3 t, 30 sin3 t) for t ∈ [0, π/2]. The area of one side is

∫

C
f(x, y)ds,

where ds = ‖x′(t)‖dt = 90 sin t cos t dt. So

∫

C
f(x, y)ds =

∫ π

0

(

1 + 10 sin3 t
)

90 sin t cos t dt

= 2

∫ π/2

0

(

1 + 10 sin3 t
)

90 sin t cos t dt

= 180

∫ π/2

0
(sin t+ 10 sin4 t) cos t dt = 225.

Thus the area of fence(both sides) is 450 (square ft).

Line integrals over curves with several components

Let C be an oriented curve which is made up of several oriented curves Ci, i =

1, 2, · · · (without overlapping except at end points). Then we write

C = C1 + C2 + · · ·+ Cn.

Since each Ci can be parameterized separately, we can define the integral over

C by
∫

C
fds =

∫

C1

fds+

∫

C2

fds+ · · ·+
∫

Cn

fds.

Example 15.1.5. Find path integral of f(x, y, z) = x2+y2+z2 over C, where

C = {(cos t, sin t, t) : t ∈ [0, 2π]} ∪ {(1, 0, t) : t ∈ [0, 2π]}.

sol. We write C as the union of C1 and C2, where

C1 = {(cos t, sin t, t) : t ∈ [0, 2π]}, C2 = {(1, 0, t) : t ∈ [0, 2π]}.
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We parameterize C1 and C2 as follows:

x1 = (cos t, sin t, t), t ∈ [0, 1], x2 = (1, 0, t), t ∈ [0, 2π].

Then

∫

C
f ds =

∫

C1

f ds+

∫

C2

f ds

=

∫ 2π

0
(1 + t2)

√
2 dt+

∫ 2π

0
(1 + t2) dt

= (1 +
√
2)
(

2π + 8π3/3
)

.

Mass and Moment of a wire

Imagine coils or springs and wires as masses distributed along smooth curves

in space.

When a curve C is parameterized by r(t) = x(t)i+ y(t)j+ z(t)k, a ≤ t ≤ b,

the density of wire is δ(x(t), y(t), z(t)).

M =
∫

C δ ds

Myz =
∫

C xδ ds

Mzx =
∫

C yδ ds

Mxy =
∫

C zδ ds

x̄ =
Myz

M , ȳ = Mzx

M , z̄ =
Mxy

M .

moment of inertia about the axis and the line L

Ix =
∫

C(y
2 + z2)δ ds, Iy =

∫

C(x
2 + z2)δ ds, Iz =

∫

C(x
2 + y2)δ ds, IL =

∫

C r
2δ ds.

Example 15.1.6. Assume a wire is lying on an arc x = 0, y2 + z2 = 1, z ≥ 0

of yz-plane. Find the center of mass of the mass if the density is given by

δ(x, y, z) = 2− z.

sol. We know x̄ = ȳ = 0 since the arc lies symmetrically about z axis. To

find z̄ we parameterize the semi circle

y = cos t, z = sin t, 0 ≤ t ≤ π.

|x′(t)| = ‖(− sin t, cos t)‖ = 1
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so ds = dt.

M =

∫

C
δds =

∫ π

0
(2− sin t)dt = 2π − 2.

Mxy =

∫

C
zδds =

∫ π

0
(sin t)(2− sin t)dt

=

∫ π

0
(2 sin t− sin2 t)dt =

8− π

2
.

z̄ =
Mxy

M
=

8− π

2

1

2π − 2
=

8− π

4π − 4
.

15.2 Vector fields and Line integral: Work, Circu-

lation and Flux

Vector fields

Imagine a lot of arrows (vectors) spread over a (corn) field.

Definition 15.2.1. A vector field is a vector valued function defined on a

domain:

F(x, y, z) =M(x, y, z)i+N(x, y, z)j + P (x, y, z)k.

The field is continuous (resp. differentiable) if its components are contin-

uous (resp. differentiable).

As an example, you can think of velocity vector of a moving fluid (river).

At each point of the domain (river), there is an associated velocity vector

denoting the fluid flow.

Gradient fields and potentials

Given real C1- function f(x1, x2, . . . , xn), we define the gradient field by

∇f := (
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn
).

If a vector field F is given by

F(x) = ∇f(x),
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F (x, y) = (x,−y) F (x, y) = (x, y)

Figure 15.2: Vector fields

for some scalar function f , then f is called the potential function.

Line Integrals of Vector Fields

As an example, consider the work done by a force field. Suppose a particle

moves along a curve x while acted upon by a force F. If a portion of x is a

line segment given by the vector ∆x and F is constant force, then the work

done on the particle along ∆x is, by definition

Work = F ·∆x = magnitude of force × displacement in the direction of force.

If the path is a curve, we break the curve into small pieces and add the work

C

b

b

F

(F ·T)T

Figure 15.3: Line integral of vector fields is integral of tangential projection

done on each piece then take the limit. The the work done on the i-th piece

is ≈ F(x(t∗i )) ·∆xi. So the work is defined by

n−1
∑

i=0

F(x(t∗i )) ·∆xi =
n−1
∑

i=0

F(x(ti)) · [x(ti +∆t)− x(ti)].
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Taking the limit

lim
n→∞

n−1
∑

i=0

F(x(t∗i )) ·∆xi = lim
n→∞

n−1
∑

i=0

F(x(ti)) ·
∆xi

∆t
∆t

=

∫ b

a
F(x(t)) · x′(t)dt.

This line integral can be interpreted as integral of the tangential component

of F · T along the curve as follows: For x′(t) 6= 0, we see the vector T(t) =

x′(t)/‖x′(t)‖ is the unit tangent vector. Hence

∫ b

a
F(x(t)) · x′(t)dt =

∫ b

a

[

F(x(t)) · x′(t)

‖x′(t)‖

]

‖x′(t)‖dt

=

∫ b

a
[F(x(t)) ·T(t)] ‖x′(t)‖dt

=

∫

C
(F ·T) ds ≡

∫

C
F · dx.

Note also that

T(t) =
x′(t)

‖x′(t)‖ =
dx(t)/dt

‖x′(t)‖ =
dx

ds
.

Definition 15.2.2. Let F be a continuous vector field on R
3 that is defined on

a set containing the image of C1 - curve x : [a, b] → R
3. Define the (vector)

line integral of F along the curve as

∫

C
(F ·T) ds =

∫

C
F · dx

ds
ds =

∫

C
F · dx.

So the line integral of a vector field is the path integral(scalar line integral)

of the tangential component F ·T along the curve.

Example 15.2.3. Suppose F(x, y, z) = x3i + yj + zk and the curve C is a

circle given by x = 0, y2 + z2 = a2. Compute
∫

C F · dx.

sol. We parameterize the circle x(t) = (x(t), y(t), z(t)) by

x = 0, y = a cos t, z = a sin t, 0 ≤ t ≤ 2π.

x′(t) = (0,−a sin t, a cos t).

Since F(x(t)) ·x′(t) = 0, the work must be zero. You can verify by finding the

value.
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Line integral with resp. to dx, dy or dz

Suppose the vector field

F(x, y, z) =M(x, y, z)i +N(x, y, z)j + P (x, y, z)k

is given and

r(t) ≡ x(t) = x(t)i+ y(t)j+ z(t)k, a ≤ t ≤ b

is a smooth curve.Then recalling r′(t) = dx
dt i+

dy
dt j+

dz
dtk, we see

∫ b

a
F(r(t))·dr =

∫ b

a
(M,N,P )·(dx

dt
,
dy

dt
,
dz

dt
)dt =

∫

C
Mdx+Ndy+Pdz. (15.1)

Thus the lintegral of a vector field F(x, y, z) = M(x, y, z)i + N(x, y, z)j +

P (x, y, z)k is written in the form of (15.1).

Flow integrals and circulation of velocity fields

Definition 15.2.4. If C is a smooth curve in the domain of a continuous

vector field F and T is unit tangent vector on C, the flow of F along C from

A = x(a) to B = x(b) is
∫

C
F ·T ds.

If the curve is closed, i.e, A = B, then the flow is called the circulation of F

along C.

Example 15.2.5. Let F(x, y, z) = xi+ zj+ yk. Find the flow of F along the

helix r(t) = cos ti+ sin tj+ tk, 0 ≤ t ≤ π/2.

sol.
dr

dt
= (− sin t, cos t, 1).

∫

C
F · dr

dt
=

∫ π/2

0
(− sin t cos t+ t cos t+ sin t) dt

=

[

cos2 t

2
+ t sin t

]

π
2

0

=
π

2
− 1

2
.
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Example 15.2.6. Find the circulation of F(x, y, z) = (x− y)i+ xj along the

circle x2 + y2 = 1.

sol. Parameterize the unit circle by r(t) = cos ti+sin tj (0 ≤ t ≤ 2π). Then

on the circle F = (cos t− sin t)i+ cos tj and

dr

dt
= (− sin t, cos t, 0), F · dr

dt
= − sin t cos t+ 1.

The circulation is

∫

C
F · dr

dt
dt =

∫ 2π

0
(1 − sin t cos t) dt

=

[

t− sin2 t

2

]2π

0

= 2π.

Flux across a simple closed plane curve

Definition 15.2.7. If C is a smooth simple closed curve in the domain of a

continuous vector field F and n is unit outward normal vector on C, the flux

of F across C is

∫

C
F · n ds.

Calculating flux across a simple closed plane curve:

Let (x(t), y(t)) be a parametrization of C and F(x, y) = M(x, y)i +N(x, y)j.

Then unit normal vector is (Fig. 15.4)

n = t× k =

(

dx

ds
i+

dy

ds
j

)

× k =
dy

ds
i− dx

ds
j.

F · n =M(x, y)
dy

ds
−N(x, y)

dx

ds
.

Hence the flux is
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x y

z

t

k
n

Figure 15.4: Outward normal n = t× k directs the rhs of a walking man

∫

C
F · n ds =

∫

C

(

M
dy

ds
−N

dx

ds

)

ds (15.2)

=

∮

C
Mdy −Ndx. (15.3)

Example 15.2.8. Find the flux of F(x, y, z) = (x − y)i + xj along the circle

x2 + y2 = 1. r(t) = cos ti+ sin tj (0 ≤ t ≤ 2π).

sol. We see dr
dt = (− sin t, cos t). Hence

dy = cos t, dx = sin t.

Since

M = x− y = cos t− sin t, N = x = cos t

we see the flux is

∫

C
Mdy −Ndx =

∫ 2π

0
(cos2 t− sin t cos t+ sin t cos t) dt

=

∫ 2π

0
cos2 t dt =

∫ 2π

0

1 + cos 2t

2
dt

=

[

t

2
+

sin 2t

4

]2π

0

= π.
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b

b

C1

C2

Figure 15.5: Two curves having the same end points

15.3 Path independence, conservative vector fields

Definition 15.3.1. A line integral a vector field F is called path indepen-

dent if
∫

C1

F · dr =

∫

C2

F · dr (15.4)

for any two oriented curves C1, C2 lying in the domain of F having same end

points. The field is called conservative.

A vector field F is called a gradient vector field if F = ∇f for some real

valued function f. Thus

F =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

The function f is called a potential of F.

Example 15.3.2. A gravitational force field has the potential function f =
GmM

r (r = (x, y, z), r =
√

x2 + y2 + z2).

F = −GmM
r3

r = ∇f.

sol. We take derivative of r2 = x2 + y2 + z2, i.e., 2r ∂r
∂x = 2x, 2r ∂r∂y =

2y, 2r ∂r∂z = 2z. Thus

∇f = −GmM
r2

(
∂r

∂x
,
∂r

∂y
,
∂r

∂z
) = −GmM

r3
r.
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Theorem 15.3.3. Suppose f : R3 → R is class C1 and r : [a, b] → R
3 is

smooth curve C and F is a continuous gradient field such that F = ∇f . Then
∫

C
F · dr =

∫

r

∇f · dr = f(r(b))− f(r(a)).

In other words, the gradient field is conservative.

Proof. By the chain rule, we get

(f ◦ r)′(t) = ∇f(r(t)) · r′(t).

So

∫

C
F · dr =

∫ b

a
∇f(r(t)) · r′(t)dt =

∫ b

a

d

dt
f(r(t))dt = f(r(b))− f(r(a)).

So the line integral is independent of parametrization.

Theorem 15.3.4. (Conservative Field) Let F be a C1-vector field on an

open connected region D in R
3. Then F is conservative if and only if

F = ∇f

for some f .

Proof. We have already seen that if F = ∇f , then it is conservative. We thus

need to prove its converse.

Let A and B are any two points in the region D. Assume

∫

C1

F · dx =

∫

C2

F · dx

for any two curves C1 and C2 connecting A and B. Let F = (F1, F2, F3),

A = (x0, y0, z0) and B = (x, y, z) and let C be any curve connecting A to B.

Define

f(x, y, z) =

∫

C
F · dx =

∫

C
F1dx+ F2dy + F3dz.

Here f is well-defined, since it is defined independent of the choice of C. In

particular, we choose C consisting of a curve and union of edges of certain

rectangular box. Consider a small box with opposite vertices (x0, y0, z0) and

(x1, y1, z1) contained domain (fig 15.6).
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b b

b

b

b

(x0, y0, z0)
x

y

z

C1

C2

C3

C4

(x1, y1, z1)
(x1, y, z1)

(x, y, z1)

(x, y, z)

O

b

b

bb

b :Places where F is undefined

Figure 15.6: C = C1 + C2 + C3 + C4 connects (x0, y0, z0) and (x, y, z)

Choose C = C1+C2+C3+C4, where C1 is a curve connecting (x0, y0, z0)

to (x1, y1, z1) and C2, C3, and C4 are edges of the box. Then

f(x, y, z) =

∫

C
F · dx

=

∫

C1

F · dx+

∫

C2

F · dx+

∫

C3

F · dx+

∫

C4

F · dx

=

∫

C1

F · ds+
∫ y

y1

F2(x1, t, z1)dt+

∫ x

x1

F1(t, y, z1)dt+

∫ z

z1

F3(x, y, t)dt.

From this we see ∂f/∂z = F3. Similarly, by choosing different path(i.e, choos-

ing a path whose last path is along x-direction) we have

f(x, y, z) =

∫

C1

F ·dx+
∫ y

y1

F2(x1, t, z1)dt+

∫ z

z1

F3(x1, y, t)dt+

∫ x

x1

F1(t, y, z)dt.

So ∂f/∂x = F1. Similarly, by choosing appropriate curve, we can show

∂f/∂y = F2. Thus F = ∇f .

Definition 15.3.5. A region R in R
2 or R

3 is called simply connected if

every closed curve C in R can be continuously shrunk to a point (contractible)

while remaining in R throughout the deformation.

Example 15.3.6. The 2 dimensional plane with a disk removed is not sim-

ply connected, but 3 dimensional space is still simply connected if a finite

number of disks are removed. The 3 dimensional space is not simply con-
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x

y

z

Red curve is not contractible

Figure 15.7: Solid of torus is not simply connected

nected if a line(or an infinite cylinder) is removed.

R1 R2

Figure 15.8: ‘Simply connected’ and ‘not simply connected’ region

Example 15.3.7. Let F = yi − xj and consider two paths C1 and C2 con-

necting (0, 0) and (1, 1). We compare
∫

C1
F · dr and

∫

C2
F · dr. These curves

may be parameterized as

C1 :







x = t

y = t
(0 ≤ t ≤ 1) and C2 :







x = t

y = t2
(0 ≤ t ≤ 1).
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C1

C2

Figure 15.9: Two paths connecting (0, 0) and (1, 1)

Curl of a vector field in R
3

If F =M i+N j+ Pk = (F1, F2, F3), then ∇× F (≡ curlF) is defined as

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

M N P

∣

∣

∣

∣

∣

∣

∣

∣

=
(∂P

∂y
− ∂N

∂z

)

i+
(∂M

∂z
− ∂P

∂x

)

j+
(∂N

∂x
− ∂M

∂y

)

k

=

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x1

∂
∂x2

∂
∂x3

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

∣

=
(∂F3

∂x2
− ∂F2

∂x3

)

i+
(∂F1

∂x3
− ∂F3

∂x1

)

j+
(∂F2

∂x1
− ∂F1

∂x2

)

k.

Component test for conservative field

If a field F = M i + N j + Pk is conservative on a simply connected domain,

then by above Theorem, there exists some function f s.t.

F =M i+N j+ Pk =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

Hence we can check the following holds: (by taking the derivative)

∂P

∂y
=
∂N

∂z
,

∂M

∂z
=
∂P

∂x
and

∂N

∂x
=
∂M

∂y
. (15.5)

Theorem 15.3.8. Let F be a C1-vector field on an open simply connected

region D in R
3. Then F is conservative if and only if (15.5) holds (in other

words, ∇×F = 0).

Proof. If F is conservative, we have just seen that F = ∇f for some f . Then

by checking, we can easily see (15.5) holds. To show the converse holds, we

need Stokes’ theorem(Later)
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Example 15.3.9. Show that the vector field is conservative and find its po-

tential.

F(x, y, z) = (ex sin y − yz)i+ (ex cos y − xz)j+ (z − xy)k.

sol. One can check (15.5) or check if the curl F is zero:

∇× F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

ex sin y − yz ex cos y − xz z − xy

∣

∣

∣

∣

∣

∣

∣

=

(

∂

∂y
(z − xy)− ∂

∂z
(ex cos y − xz)

)

i+

(

∂

∂z
(ex sin y − yz)− ∂

∂x
(z − xy)

)

j

+

(

∂

∂x
(ex cos y − xz)− ∂

∂y
(ex sin y − yz)

)

k = 0.

So the condition (15.5) holds. To find a potential we need to find and f

satisfying

∂f

∂x
= ex sin y − yz,

∂f

∂y
= ex cos y − xz,

∂f

∂z
= z − xy. (15.6)

Thus we proceed as follows: First integrate w.r.t x.

(1) f(x, y, z) =
∫

(ex sin y− yz)dx = ex sin y− xyz+ g(y, z) for some g(y, z).

(2) ∂f
∂y = ex cos y − xz + ∂g

∂y = ex cos y − xz. Thus g(y, z) is a function of z

only, thus g = g(z). Taking derivative of f w.r.t z, we have

(3) ∂f
∂z = −xy + g′(z) = z − xy. Thus g(z) = 1

2z
2 +C.

(4) Hence f(x, y, z) = ex sin y − xyz + 1
2z

2 + C.

For a non simply connected region, curl free does not imply conservative-

ness.

Example 15.3.10. Consider the vector field

F(x, y) =
−y

x2 + y2
i+

x

x2 + y2
j+ 0k.

This field satisfies ∇ × F = 0 except the origin. But it is not conservative.

Explain why.
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sol. Need to check

∂P

∂y
=
∂N

∂z
,

∂M

∂z
=
∂P

∂x
and

∂N

∂x
=
∂M

∂y
. (15.7)

In this field P = 0 and no z variable. Hence to check the condition it is

sufficient to check
∂N

∂x
=

y2 − x2

(x2 + y2)2
=
∂M

∂y
.

We evaluate this integral along the circle : r(t) = (cos t, sin t), 0 ≤ t ≤ 2π.

F = − sin ti+ cos tj, r′(t) = (− sin t, cos t).

Hence

∫

r

F · dx =

∫ 2π

0
(− sin ti+ cos tj) · (− sin t, cos t) dt

=

∫ 2π

0
1 dt = 2π 6= 0.

Hence this field is not conservative. But this does not contradict Theorem

15.3.4 because the domain in this case is not simply connected.

Exact differential form

Consider a vector field F = (F1, F2, F3) and a parameterized curve x(t) =

(x(t), y(t), z(t)). Since (dx, dy, dz) = (x′(t), y′(t), z′(t))dt, we can write the

line integral as

∫

C
F · dr =

∫

C
(F1, F2, F3) · (x′(t), y′(t), z′(t))dt

=

∫

C
F1dx+ F2dy + F3dz.

The expression F1dx+ F2dy + F3dz is called a differential form.

Definition 15.3.11. A differential form is said to be exact if it has the form

Mdx+Ndy + Pdz =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz ≡ df = ∇f · dx.
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for some scalar function f.

Component test for exactness

The differential form is exact if and only if (following Theorem 15.3.4)

∂P

∂y
=
∂N

∂z
,

∂M

∂z
=
∂P

∂x
and

∂N

∂x
=
∂M

∂y
. (15.8)

This is a consequence of Theorem 15.3.4 for conservative field.

Example 15.3.12. Find the potential of the vector field if it is conservative.

F(x, y) = (2xy + cos 2y)i+ (x2 − 2x sin 2y)j.

sol.

First we check that ∂N
∂x = ∂M

∂y . Hence it is conservative. Let f be the

potential function. Then it satisfies ∇f = F, i.e.,

∂f

∂x
= 2xy + cos 2y,

∂f

∂y
= x2 − 2x sin 2y. (15.9)

Thus we proceed as follows:

(1) Integrate: f(x, y) =
∫ ∂f

∂x dx =
∫

2xy + cos 2y dx = x2y + x cos 2y + g(y)

(2) Set ∂f
∂y = x2 − 2x sin 2y + g′(y)

(3) Show g(x, y) = C.

Thus we see f(x, y) = x2 − 2x sin 2y + C.

Example 15.3.13. Show the form ydx+ xdy+4dz is exact and evaluate the

integral
∫

C
ydx+ xdy + 4dz.

Here, C is a curve having A and B as the beginning point and end point.

sol.

First we check (15.8) or

curl F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

y x 4

∣

∣

∣

∣

∣

∣

∣

= 0.
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Hence it is conservative. Let f be the potential function. Then it satisfies

∇f = F, i.e.,
∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= 4. (15.10)

Thus we proceed as follows:

(1) Integrate: f(x, y) =
∫

ydx = xy + g(y, z)

(2) Set ∂f
∂y = x+ ∂g

∂y = x⇒ g = h(z)

(3) ∂f
∂z = 4 ⇒ h = 4z + C

Thus f = xy + 4z + C and
∫

C ydx+ xdy + 4dz = f(B)− f(A).

15.4 Green’s Theorem in the plane

Circulation and flux

We first consider two important concept for a fluid (flow) related to a closed

region in 2D. (can be extended to 3D later) Let F = M i +N j be the vector

field representing the velocity of some fluid. Then

(1) The circulation rate measures the spin of the fluid around a

closed curve, which is given
∮

C F · dr =
∮

C Mdx+Ndy.

(2) The flux rate measures the rate at which the fluid leaves out of

the closed curve, which is given
∮

C F · nds =
∮

C Mdy −Ndx.

(x, y) (x+∆x, y)

(x, y +∆y) (x+∆x, y +∆y)

Figure 15.10: Circulation and flux
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1. Circulation along the closed curve C is
∮

C Mdx+Ndy. We compute

it along the horizontal lines and vertical lines. (Fig. 15.10)

{

top
∫

−M(x, y +∆y)dx

bottom
∫

M(x, y)dx

}

=>

∫ x+∆x

x

∫ y+∆y

y
−∂M
∂y

dydx

{

right
∫

N(x+∆x, y)dy

left
∫

−N(x, y)dy

}

=>

∫ y+∆y

y

∫ x+∆x

x

∂N

∂x
dxdy

Adding these, we get

∮

C
Mdx+Ndy =

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dxdy. (15.11)

Dividing it by the area A(R) and taking the limit as the area approaches zero

we get the circulation density ∂N
∂x − ∂M

∂y at each point.

2. Flux across the closed curve C is
∮

C Mdy − Ndx. Again we compute

it along the horizontal lines and vertical lines. (Fig. 15.10)

{

top
∫

N(x, y +∆y)dx

bottom
∫

−N(x, y)dx

}

=>

∫ x+∆x

x

∫ y+∆y

y

∂N

∂y
dydx

{

right
∫

M(x+∆x, y)dy

left
∫

−M(x, y)dy

}

=>

∫ y+∆y

y

∫ x+∆x

x

∂M

∂x
dxdy

Adding these, we get

∮

C
Mdy −Ndx =

∫∫

R

(

∂M

∂x
+
∂N

∂y

)

dxdy. (15.12)

Dividing it by the area A(R) and taking the limit as the area approaches

zero we get the flux density ∂M
∂x + ∂N

∂y ≡ divF at each point. 1

These are two versions of Green’s theorem on rectangular regiosn. They

hold much more general regions.

Remark 15.4.1. The second version of Green’s theorm, i.e., the relation

(15.12) follows from the circulation version (15.11) by replacing N by M and

M by−N .

1For 3D case, divF ≡ ∂M
∂x

+ ∂N
∂y

+ ∂P
∂z

for F = (M,N,P ).
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Relation with 3D curl

If F = M(x, y)i + N(x, y)j is two dimensional vector field, then it can be

considered as a three dimensional vector field as F =M(x, y)i+N(x, y)j+0·k.
The curl F can be computed :

curl F =
(∂P

∂y
− ∂N

∂z

)

i+
(∂M

∂z
− ∂P

∂x

)

j+
(∂N

∂x
− ∂M

∂y

)

k

=
(∂N

∂x
− ∂M

∂y

)

k.

Definition 15.4.2. The circulation density of F is the expression ∂N
∂x − ∂M

∂y ,

also called the k - component of the curl denoted by (curlF) · k.

Physical meaning:

(1) The integral of a circulation around a closed curve is the same as

the integral of the curl of F on the region enclosed by the curve.

(2) Normal component of curl F is the rate of rotation along the

plane.

Green’s Theorem

O a b

y = φ1(x)

y = φ2(x)

C1

C2

x

y

O

c

d

x = ψ1(y) x = ψ2(y)

C1 C2

x

y

Figure 15.11: As type 1 region and boundary

Theorem 15.4.3. (Green’s theorem: Circulation-Curl form) Let D be

a closed bounded, region in R
2 with boundary C = ∂D with positive orienta-

tion. (The region D is on the left side as one traverses C.) Here ∂D denotes

the boundary of D and
∮

∂D means that the integral is defined on a closed curve.
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Suppose F(x, y) =M(x, y)i+N(x, y)j be a vector field of class C1. Then

∮

∂D
F ·T ds =

∮

∂D
M dx+N dy =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.

The integral of the circulation around a ∂D is the integral of curl F·k
on D.

Proof. Assume D is a region of type 1 given as follows:

D = {(x, y)| a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}.

We decompose the boundary of D as ∂D = C+
1 + C−

2 (fig 15.11). Using the

Fubini’s theorem, we can evaluate the double integral as an iterated integral

∫∫

D
−∂M(x, y)

∂y
dxdy =

∫ b

a

∫ φ2(x)

φ1(x)
−∂M(x, y)

∂y
dydx

=

∫ b

a
[M(x, φ1(x))−M(x, φ2(x))]dx.

On the other hand, C+
1 can be parameterized as x → (x, φ1(x)), a ≤ x ≤ b

and C+
2 can be parameterized as x→ (x, φ2(x)), a ≤ x ≤ b. Hence

∫ b

a
M(x, φi(x))dx =

∫

C+

i

M(x, y)dx, i = 1, 2.

By reversing orientations

−
∫ b

a
M(x, φ2(x))dx =

∫

C−

2

M(x, y)dx.

Hence
∫∫

D
−∂M
∂y

dxdy =

∫

C+
1

M dx+

∫

C−

2

M dx =

∫

∂D
M dx.

Similarly if D is a region of type 2, one can show that

∫∫

D

∂N

∂x
dxdy =

∫

C+
1

Ndy +

∫

C−

2

Ndy =

∫

∂D
N dy.

Here C1 and C2 are the curves defined by x = ψ1(y) and x = ψ2(y) for

c ≤ y ≤ d. The proof is completed.
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Theorem 15.4.4. (Green’s theorem: Flux-Divergence form) Let D be a

closed bounded, region in R
2 with boundary C = ∂D with positive orientation.

Suppose F(x, y) =M(x, y)i+N(x, y)j be a vector field of class C1. Then

∮

∂D
F · n ds =

∮

∂D
M dy −N dx =

∫∫

D

(

∂M

∂x
+
∂N

∂y

)

dxdy.

The integral of the outward flux around a ∂D = the integral of divF

on D.

C1

C2

x

y

O

D1
D2

D3
D4

Figure 15.12: Apply Green’s theorem to each of the regions

Interior of a region

Let D be a region in R
2. We denote its boundary by ∂D and assume its

orientation is given in the counterclockwise direction, i.e, when one walks

along the boundary, the region on his left is assumed to be interior. (Fig.

15.12)

Generalizing Green’s theorem-may skip

In fact, Green’s theorem holds for more general region. For example, Green’s

theorem can be used for a region with a hole. One cuts the region so that each

region is type 3.

Theorem 15.4.5. (Green’s theorem for general region) Let D be a re-

gion which can be divided into a several pieces of regions where Green’s theorem

apply, and let ∂D be the boundary. Suppose M and N : D → R are C1 func-
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tions, then
∫

∂D
Mdx+Ndy =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Proof. Assume D is the union of type 3 regions Di, i = 1, 2, . . . , n whose

boundary ∂D is the sum of ∂Di, i = 1, 2, . . . , n. In other words,

D =
n
∑

i=1

Di , ∂D =
n
∑

i=1

∂Di.

So
∫

∂D
Mdx+Ndy =

n
∑

i=1

∫

∂Di

Mdx+Ndy.

and
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy =

n
∑

i=1

∫∫

Di

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Since each Di is type 3, we can apply Theorem 15.4.3 to have

∫

∂Di

Mdx =

∫∫

Di

−∂M
∂y

dxdy

and
∫

∂Di

Ndy =

∫∫

Di

∂N

∂x
dxdy.

We add all these terms to get the result.

Example 15.4.6. Verify Green’s theorem for

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2

on D = {(x, y)| h2 ≤ x2 + y2 ≤ 1}, 0 < h < 1.

sol. The boundary of D consists of two circles.

C1 : x = cos t, y = sin t, 0 ≤ t ≤ 2π

Ch : x = h cos t, y = h sin t, 0 ≤ t ≤ 2π.

In the curve ∂D = Ch ∪ C1, C1 is oriented counterclockwise while Ch

is oriented clockwise. Since M,N are class C1 in the annuls D, we can use
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1h

D

C1

Ch

x

y

O

D

C∗

Ch

x

y

O

Figure 15.13: Domains for Example 15.4.6 and Example 15.4.7

U

Figure 15.14: Flow across surface U

Green’s theorem. Since

∂M

∂y
=

(x2 + y2)(−1) + 2y

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
=
∂N

∂x

we have
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy =

∫

D
0 dxdy = 0.

On the other hand,

∫

∂D
Mdx+Ndy =

∫

C1

xdy − ydx

x2 + y2
+

∫

Ch

xdy − ydx

x2 + y2

=

∫ 2π

0
(cos2 t+ sin2 t)dt+

∫ 0

2π

h2(cos2 t+ sin2 t)

h2
dt

= 2π − 2π = 0.

Hence
∫

∂D
Mdx+Ndy = 0 =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.
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V

V

bb

C

(b)

b

b

V

V(x, y, z)

(x, y, z)

V

V

bb

C

(a)

Figure 15.15: (a) circulation zero; (b) nonzero circulation

Example 15.4.7. Evaluate
∫

C∗

xdy−ydx
x2+y2

where C∗ is any closed curve around

the origin.

sol. Since the integrand is not continuous at (0, 0), we cannot use Green’s

theorem on the interior of C∗. But if we remove a small circle of radius h

around the origin, we can use the Green’s theorem on the region bounded by

C∗ and Ch (Fig 15.13) as in the previous example to see

∫

C∗

Mdx+Ndy = −
∫

Ch

Mdx+Ndy.

Now the integral −
∫

Ch
(Mdx + Ndy) can be computed by polar coordinate:

From

x = h cos θ, y = h sin θ,

dx = −h sin θdθ,
dy = h cos θdθ,

we see
xdy − ydx

x2 + y2
=
h2(cos2 θ + sin2 θ)

h2
dθ = dθ.

Hence
∫

C∗

xdy − ydx

x2 + y2
= 2π.
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Area

Theorem 15.4.8. If C is a simple closed curve bounding a region D, then

the area A is

A =
1

2

∫

∂D
xdy − ydx.

Proof. Let M(x, y) = −y,N(x, y) = x. Then

1

2

∫

∂D
xdy − ydx =

1

2

∫∫

D

(

∂x

∂x
− ∂(−y)

∂y

)

dxdy

=
1

2

∫∫

D
(1 + 1)dxdy =

∫∫

D
dxdy = A.

Example 15.4.9. Find the area of the region enclosed by x2/3 + y2/3 = a2/3.

sol. Let x = a cos3 θ, y = a sin3 θ, (0 ≤ θ ≤ 2π). Then

A =
1

2

∫

∂D
xdy − ydx

=
1

2

∫ 2π

0
[(a cos3 θ)(3a sin2 θ cos θ)− (a sin3 θ)(−3a cos2 θ sin θ)]dθ

=
3

2
a2
∫ 2π

0
(sin2 θ cos4 θ + cos2 θ sin4 θ)dθ

=
3

8
a2
∫ 2π

0
sin2 2θdθ =

3

8
πa2.

Hence area is 3πa2/8. (Figure 15.16).

Vector Form using the Curl

Any vector field in R
2 can be treated as a vector field in R

3. For example,

the vector field F = M i + N j on R
2 can be viewed as F = M i + N j + 0k.

Then we can define its curl and it can be shown that the curl is (compute!)

(∂N/∂x − ∂M/∂y)k. Then we obtain

(curlF) · k =

[

(∂N

∂x
− ∂M

∂y

)

k

]

· k =
(∂N

∂x
− ∂M

∂y

)

.



236 CHAPTER 15. INTEGRAL OF VECTOR FIELDS

b

b

b

b

b

x

y

(a, 0)(−a, 0)

(0, a)

(0,−a)

(a/2
√
2, a/2

√
2)

O

Figure 15.16: x2/3 + y2/3 = a2/3

Hence by Green’s theorem,

∫

∂D
F·dx =

∫

∂D
Mdx+Ndy =

∫∫

D

(∂N

∂x
− ∂M

∂y

)

dxdy =

∫∫

D
(∇×F)·k dxdy.

This is a vector form of Green’s theorem.

Theorem 15.4.10. (Vector form of Green’s theorem) Let D ⊂ R
2 be

region with ∂D. If F =M i+N j is a C1-vector field on D then

∫

∂D
F · dx =

∫∫

D
(curl F) · k dxdy =

∫∫

D
(∇× F) · k dxdy.

(x, y)

F(x, y)
x

y

z

curl F = ( ∂N
∂x

− ∂M
∂y

)k

∂D
D

O

b

b

b

b

b
b

Figure 15.17: curlF is normal to the plane
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Divergence Theorem - revisited

Definition 15.4.11. The divergence density of the vector field F =M i+

N j is

divF =
∂M

∂x
+
∂N

∂y
.

Theorem 15.4.12. (Green’s theorem : Flux-Divergence form) If F =

M i+N j is a C1-vector field on D then

∫

∂D
(F · n)ds =

∫

∂D
Mdy −Ndx =

∫∫

D
(
∂M

∂x
+
∂N

∂y
) dxdy =

∫∫

D
divF dxdy.

n

D

Figure 15.18: n is the unit outward normal vector to ∂D

Proof. Let x(t) be a parametrization of the boundary of D. Since x′(t) =

(x′(t), y′(t)) is tangent to ∂D we see n · x′(t) = 0. i.e, n is perpendicular to

the boundary. Choosing the proper sign of n, we see

n =
(y′(t),−x′(t))

‖x′(t)‖ .

Hence

∫

∂D
(F · n)ds =

∫ b

a

(

M(x, y)y′(t)−N(x, y)x′(t)
√

[x′(t)]2 + [y′(t)]2

)

√

[x′(t)]2 + [y′(t)]2dt

=

∫ b

a
[M(x, y)y′(t)−N(x, y)x′(t)]dt

=

∫

∂D
Mdy −Ndx.
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By Green’s theorem,

∫

∂D
(F · n)ds =

∫

∂D
Mdy −Ndx =

∫∫

D

(

∂M

∂x
+
∂N

∂y

)

dxdy

=

∫∫

D
divF dxdy.

Summary of Green’s theorem

2-D Green’s theorem has several different forms:

∫

∂D
Mdx+Ndy =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy (15.13)

∫

∂D
(F ·T)ds =

∫

∂D
F · dr =

∫∫

D
(∇×F) · k dxdy (15.14)

∫

∂D
Mdy −Ndx =

∫∫

D

(

∂M

∂x
+
∂N

∂y

)

dxdy (15.15)

∫

∂D
(F · n)ds =

∫∫

D
divF dxdy. (15.16)

We will see the forms (15.14) and (15.16) will have a natural generalization to

3-D, called Stokes’ theorem and Gauss divergence theorem respectively.

u

v

D

∫

∂D
F · dr =

∫∫

D
(∇×F) · k dA

∂D

k

x

y

z

n
∂S

S

∫

∂S
F · dr =

∫∫

S
(∇× F) · n dσ

r(u, v)

Figure 15.19: Green’s theorem (15.14) to parameterized surface
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15.5 (Parameterized) Surfaces and Surface area

Graphs are too restrictive.

Consider the surface of a sphere or a torus. These are important examples of

figures that arise often in applications. But those figures cannot be represented

as the graph of some functions. (refer to Fig. 15.19 or 15.20) Thus we need

some other ways of representing surfaces.

Definition 15.5.1. A parameterized surface is a (one-to-one) function

r : D ⊂ R
2 → R

3 where D is a domain in R
2. The underlying surface S is

the image r(D) of r. The function r is also called a parametrization of S.

Usually, we write

r(u, v) = (x(u, v), y(u, v), z(u, v)).

Remark 15.5.2. In the book they use the notation

x = f(u, v), y = g(u, v), z = h(u, v)

and set r(u, v) = f(u, v)i+ g(u, v)j + h(u, v)k.

If r is differentiable or C1, then we say S is differentiable or C1-surface.

Example 15.5.3. The graph of a function is a special case. If z = f(x, y)

(x, y) ∈ D then

r(u, v) = (u, v, f(u, v))

is a parametrization of the surface.

Example 15.5.4. Find a parametrization of the cone

z =
√

x2 + y2, 0 ≤ z ≤ 1.

sol. The surface satisfies the equation

x = u cos v, y = u sin v, z = u, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

Example 15.5.5. (1) Let D = [0, π]× [0, 2π) and

r(u, v) = (a sinu cos v, a sin u sin v, a cos v).
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x y

z

((a+ b cos φ) cos θ, (a+ b cos φ) sin θ, b sinφ)

Figure 15.20: Surface of a torus

The parametric surface is a sphere of radius a.

(2) We set r(s, v) = (a cos u, a sinu, v), 0 ≤ u ≤ 2π. This is a cylinder of

radius a.

Example 15.5.6. Consider a parametrization of the surface.



















x = (a+ b cosφ) cos θ, 0 ≤ θ, φ ≤ 2π,

y = (a+ b cosφ) sin θ, a > b > 0,

z = b sinφ.

Investigate it.

sol. Since x2 + y2 = (a+ b cosφ)2 it is easy to see this surface satisfies the

equation
(

√

x2 + y2 − a
)2

+ z2 = b2.

Let us fix φ = φ0. Then z = b sinφ0 and hence it describes a circle (red color)

of radius a+ b cosφ0 lying in the plane: z = b sinφ0.

On the other hand, let us fix θ = θ0. Then



















x = (a+ b cosφ) cos θ0,

y = (a+ b cosφ) sin θ0,

z = b sinφ

⇒



















x− a cos θ0 = b cosφ cos θ0, (0 ≤ φ ≤ 2π)

y − a sin θ0 = b cosφ sin θ0,

z = b sinφ.

Since

(x− a cos θ0)
2 + (y − a sin θ0)

2 + z2 = b2
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the curve is a circle (green color) lying in the sphere of radius b, centered

at (a cos θ0,−a sin θ0, 0) determined by the plane θ = θ0. (This is the plane

y = tan θ0x.) This surface is called a torus.

Normal Vectors, Tangent Planes, and Surface Area

Consider the mapping r : D → R
3, where we write r = (x, y, z). First look at

the case when the surface is the graph of f : D → R. Then we have

r(x, y) = (x, y, f(x, y)).

To study the surface we look at the sections: First fix y = y0 and then x = x0.

Then the derivatives of r in the direction of x-axis and y-axis at r(x0, y0) =

(x0, y0, f(x0, y0)) are

rx(x0, y0) = i+ fx(x0, y0)k, ry(x0, y0) = j+ fy(x0, y0)k.

These are nothing but the tangent vectors to the curves r(x, y0) and r(x0, y),

respectively. Hence the normal vector is given by the cross product

rx(x0, y0)× ry(x0, y0) = (i+ fx(x0, y0)k)× (j+ fy(x0, y0)k)

=

∣

∣

∣

∣

∣

∣

∣

i j k

1 0 fx(x0, y0)

0 1 fy(x0, y0)

∣

∣

∣

∣

∣

∣

∣

= −fx(x0, y0)i− fy(x0, y0)j+ k.

In general, consider the surface parameterized by

r(x(u, v), y(u, v)) = (x(u, v), y(u, v), z(u, v)).

Then we see two tangent vectors are

ru =
∂r

∂u
=
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k

∣

∣

∣

∣

(u0,v0)

rv =
∂r

∂v
=
∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k

∣

∣

∣

∣

(u0,v0)
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These are obtained by considering the cross sections with the planes v = v0

and u = u0, respectively. If the normal vector

N = ru × rv =
∂r

∂u
× ∂r

∂v

is nonzero, then we say the surface is smooth.

N

ry
rx

x

y

z

x

y

z

ellipsoid: (a sinφ cos θ, b sinφ sin θ, c cos φ)

Figure 15.21: Coord. curves, tangent vectors and normal vectors to a surface

Definition 15.5.7. When N is a normal vector to a surface r, the tangent

plane at r(u0, v0) = (x0, y0, z0) is defined by

N · (x− x0, y − y0, z − z0) = 0.

If N = (n1, n2, n3), then the equation of tangent plane is

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0.

Example 15.5.8. Consider the surface given by

x = u cos v, y = u sin v, z = u2 + v2.

Find the tangent plane at r(1, 0).

sol. Since r(u, v) = (u cos v, u sin v, u2 + v2) we have

rv = (cos v, sin v, 2u), rv = (−u sin v, u cos v, 2v).
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Hence we see ru × rv = (−2u2 cos v + 2v sin v,−2u2 sin v − 2v cos v, u). Since

r(1, 0) = (1, 0, 1) and N = ru × rv|(1, 0) = (−2, 0, 1), we see the tangent plane

is given as

−2(x− 1) + 0(y − 0) + 1(z − 1) = 0.

Example 15.5.9. Find a parametrization of the following hyperboloid of one

sheet

x2 + y2 − z2 = 1.

sol. Since the graph is symmetric in x and y, it is natural to use polar

coordinate

x = r cos θ, y = r sin θ, (0 ≤ θ < 2π)

to transform it to

r2 − z2 = 1.

Next we use the following parametrization

r = cosh s, z = sinh s, (−∞ < s <∞)

to get

x = cosh s cos θ, y = cosh s sin θ, z = sinh s.

So

r(s, θ) = (x(s, θ), y(s, θ), z(s, θ))

= (cosh s cos θ, cosh s sin θ, sinh s), (−∞ < s <∞, 0 ≤ θ < 2π).

Area of Parameterized Surface

Recall 2-D case: When r : D → R is a transformation in R
2. Consider the

small rectangle A = [u, u +∆u] × [v +∆v]. The two tangent vectors (∆u, 0)

and (0,∆v) are mapped to the boundary of image r(A) at r(u, v) as

ru∆u, rv∆v.
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These vectors form a parallelogram approximating the region r(A)(figure 15.22).

The area of the parallelogram is

∣

∣

∣

∣

∣

∂x
∂u∆u

∂x
∂v∆v

∂y
∂u∆u

∂y
∂v∆v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∆u∆v =
∂(x, y)

∂(u, v)
∆u∆v.

‖ru × rv‖∆u∆v = |J |∆u∆v.

Hence we have
∫∫

R
dxdy =

∫∫

D
|J |dudv.

u
∆u

v

∆v

x

y

rv∆v

ru∆u

r(u, v)

Figure 15.22: approximate r(A)

Now we consider a surface lying in space. We will show how to find the

area of S = r(D) where r : D → R
3 is a surface parametrization. First divide

the domain D into small rectangles. Consider a small rectangle A = [u, u +

∆u]× [v, v +∆v]. The image of A under r is a portion of the surface having

four corners at

r(u, v), r(u+∆u, v), r(u, v +∆v), r(u+∆u, v +∆v).

This surface can be approximated by a parallelogram whose sides are given

by(fig 15.23) ru(u, v)∆u and rv(u, v)∆v, where

ru = ∂r
∂u = ∂x

∂u i+
∂y
∂u j+

∂z
∂uk

rv = ∂r
∂v = ∂x

∂v i+
∂y
∂v j+

∂z
∂vk.

(15.17)

Hence the area of r(A) is (again like 2D) approximated by

‖ru × rv‖∆u∆v.
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Hence the area of the surface is the limit of the following sum:

r

O

(0,∆v)
(∆u, 0)

A

D

x

z

yO

ru∆u

rv∆v

r(A)

S

Figure 15.23: Approx. area of surface by a tangent plane

∑

‖ru × rv‖∆u∆v.

Definition 15.5.10. We define the surface area A(S) of a parameterized

surface S = r(D) by

A(S) =

∫∫

S
dS =

∫∫

D
‖ru × rv‖dudv.

We let

dσ = dS = ‖ru × rv‖dudv,

and call it the surface area differential. Then we see that 2

∫∫

S
dσ =

∫∫

S
dS =

∫∫

D
‖ru × rv‖dudv.

Remark 15.5.11. The area of a surface is independent of parametrization.

Example 15.5.12 (Cone). Let S be the surface of a cone given by

x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 1.

sol. Either use formula above or compute directly using ‖rr × rθ‖drdθ. We

2
r is assumed to be 1-1.
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can show that ‖rr × rθ‖ = r
√
2. Hence the area is

∫∫

S
dσ =

∫∫

D
‖rr × rθ‖drdθ

=

∫∫

D
r
√
2drdθ

=

∫ 2π

0

∫ 1

0
r
√
2drdθ

=

∫ 2π

0

√
2

2
dθ = π

√
2.

Example 15.5.13 (Football like surface). Find the area of the surface of

revolution of the curve x = cos z, y = 0, |z| ≤ π/2 around z-axis.

sol. The surface of revolution is parameterized by

r(u, v) = (x, y, z), x = cos u cos v, y = cos u sin v, z = u, |u| ≤ π

2
, 0 ≤ v ≤ 2π.

We see

ru = − sinu cos vi− sinu sin vj+ k

rv = − cos u sin vi+ cos u cos vj.

Compute ‖rr × rθ‖.

x

y

z

θ

ru × rv =

∣

∣

∣

∣

∣

∣

∣

i j k

− sinu cos v − sinu sin v 1

− cosu sin v cosu cos v 0

∣

∣

∣

∣

∣

∣

∣

= − cos u cos vi− cosu sin vj− sinu cos uk

‖ru × rv‖ = cos u
√

1 + sin2 u
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Hence the area is

A =

∫ 2π

0

∫ π/2

−π/2
cos u

√

1 + sin2 u dudv

= 2

∫ 2π

0

∫ π/2

0

√

1 + t2 dtdv( need table)

=

∫ 2π

0

[

t
√

1 + t2 + ln(t+
√

1 + t2)
]1

0
dv

= 2π
[√

2 + ln(1 +
√
2)
]

.

Example 15.5.14 (Helicoid-like surface). Let S be the surface given by

x = r cos θ, y = r sin θ, z = θ, (0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1).

Find its area.

sol. ‖rr × rθ‖ = ‖(cos θi+ sin θj)× (−r sin θi+ r cos θj)‖ =
√
r2 + 1.

A =

∫ 2π

0

∫ 1

0

√

1 + r2drdθ( as in the previous example)

=
1

2

∫ 2π

0

[

r
√

1 + r2 + ln(r +
√

1 + r2)
]1

0
dθ

= π
[√

2 + ln(1 +
√
2)
]

.

Implicit Surfaces

Assume a surface is defined implicitly by

F (x, y, z) = c. (15.18)

In this case, it is not easy to find the explicit form of parametrization. However,

we can still compute

dσ = dS =

∥

∥

∥

∥

(
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k)× (

∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k)

∥

∥

∥

∥

dudv (15.19)

from the implicit expression. Assume the surface is defined over a region R

having k as the unit normal vector. Define the parameters x = u, y = v then
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z(x, y) = z(u, v). It has the surface has the following parametrization

x
y

z

k

R

Figure 15.24: Implicit surface F (x, y, z) = c with normal vector k on R

r(u, v) = x(u, v)i + y(u, v)j+ z(u, v)k = xi+ yj+ z(x, y)k. (15.20)

Then

rx = i+
∂z

∂x
k and ry = j+

∂z

∂y
k. (15.21)

Meanwhile, taking the implicit derivative of (15.18) w.r.t x and y, we get

Fx + Fz
∂z

∂x
= 0 and Fy + Fz

∂z

∂y
= 0.

From this we get
∂z

∂x
= −Fx

Fz
and

∂z

∂y
= −Fy

Fz
.

Substituting these into (15.21), we get

rx = i− Fx

Fz
k and ry = j− Fy

Fz
k (15.22)

and

rx × ry =
Fx

Fz
i+

Fy

Fz
j+ k

=
1

Fz
(Fxi+ Fyj+ Fzk)

=
∇F
Fz

=
∇F

∇F · k
∴ dσ = ‖ru × rv‖dudv.
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When R is a region having i or j as the normal vector, the same argument

applies. Thus we have

The area of implicit surface F (x, y, z) = c defined over R is

∫∫

R
dσ =

∫∫

R

|∇F |
|∇F · p|dA,

where p = i, j or k is the normal to R and ∇F · p 6= 0.

Example 15.5.15. Find the area of surface of paraboloid x2 + y2 − z = 0

between 0 ≤ z ≤ 4.

sol. Let F (x, y, z) = x2 + y2 − z so that ∇F = 2xi+2yj−k. ∇F ·k = −1.

With D = {x2 + y2 ≤ 4}, the area is

A =

∫∫

D

√

4x2 + 4y2 + 1dxdy

=

∫ 2π

0

∫ 2

0

√

4r2 + 1rdrdθ

=

∫ 2π

0

1

12

[

(4r2 + 1)3/2
]2

0
dθ

=
π

6
(17

√
17− 1).

Surface Area of a Graph

When a surface S is given by the graph of function z = f(x, y) on D, we see

U is parameterized by r(x, y) = (x, y, f(x, y)). Find rx, ry by

rx = i+ fxk, ry = j+ fyk.

This corresponds to above case with F (x, y, z) = z − f(x, y).

Since

rx × ry = (i+ fxk)× (j+ fyk) = −fxi− fyj+ k,

the area is
∫∫

S
dσ =

∫∫

D

√

(fx)
2 + (fy)

2 + 1dxdy.
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Geometric interpretation

We refer to figure 15.25. The unit normal vector N(x, y, z) on S is

N(x, y, z) = −fxi− fyj+ k.

We can find the formula using the angle between N and k. Let θ be the angle

between N and k. Then cos θ satisfies

cos θ =
N · k
‖N‖ =

1
√

(fx)
2 + (fy)

2 + 1
.

Hence

dσ =

√

(fx)
2 + (fy)

2 + 1dxdy =
dxdy

cos θ
,

and we get
∫∫

S
dσ =

∫∫

D

dxdy

cos θ
.

kN

θ

Figure 15.25: Ratio between two surface area is the cosine of angle

Example 15.5.16. Find the surface area of a unit ball.

sol. From x2 + y2 + z2 = 1, we let z = f(x, y) =
√

1− x2 − y2.

∂f

∂x
=

−x
√

1− x2 − y2
,

∂f

∂y
=

−y
√

1− x2 − y2
.
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Area of the half sphere is

∫∫

S
dσ =

∫∫

D

1
√

1− x2 − y2
dxdy

=

∫ 2π

0

∫ 1

0

r√
1− r2

drdθ

= 2π.

Example 15.5.17. Let r = (r cos θ, r sin θ, θ) be the parametrization of a

helicoid-like surface S, where 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Suppose S is covered

with a metal of density m which equal to twice the distance to the central axis,

i.e, m = 2
√

x2 + y2 = 2r. Find the total mass of metal covering the surface.

sol. First we can show ‖rr × rθ‖ =
√
1 + r2. Hence we have

M =

∫∫

S
2rdσ = 2

∫∫

D
r‖rr × rθ‖drdθ

=

∫ 2π

0

∫ 1

0
2r
√

1 + r2drdθ =
4

3
π(23/2 − 1).

15.6 Surface Integrals

Integrals of scalar functions over Surface

Let r : D → R
3 be a parameterized surface S = r(D) and let f : S → R be a

real valued function defined on r. If f = 1, it represents the area:

∫∫

S
dσ =

∫∫

D
‖ru × rv‖dudv.

In general, we have

Definition 15.6.1. Let S be a surface parameterized by r(u, v) = (x(u, v), y(u, v), z(u, v)),

where (u, v) ∈ D. Then the surface integral of a scalar function f(x, y, z) de-

fined on S is

∫∫

S
f dσ =

∫∫

D
f(x(u, v), y(u, v), z(u, v))‖ru × rv‖dudv.
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Surface integrals over graphs

Suppose S is the graph of a C1 function z = g(x, y). Then we parameterize it

by

x = u, y = v, z = g(u, v)

and

‖ru × rv‖ =
√

1 + (gu)2 + (gv)2.

So the integral of f on S becomes

∫∫

S
f(x, y, z) dσ =

∫∫

D
f(x, y, g(x, y))

√

1 + (gx)2 + (gy)2 dxdy.

Example 15.6.2. Let S be graph of z = x2+y, where D is 0 ≤ x ≤ 1, −1 ≤
y ≤ 1. Find

∫∫

S x dS.

sol.

∫∫

S
x dσ =

∫∫

D
x
√

1 + (gx)2 + (gy)2 dxdy =

∫ 1

−1

∫ 1

0
x
√

1 + 4x2 + 1dxdy

=
1

8

∫ 1

−1

[
∫ 1

0
(2 + 4x2)1/2(8xdx)

]

dy =
2

3

1

8

∫ 1

−1

[

(2 + 4x2)3/2
]
∣

∣

∣

1

0
dy

=
√
6−

√
2

3
.

Example 15.6.3. Evaluate
∫∫

S z
2dS when S is the unit sphere.

sol. The unit sphere is described by

r(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), (0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π).

Since

‖rφ × rθ‖ = sinφ



15.6. SURFACE INTEGRALS 253

and z2 = cos2 φ, we have

∫∫

S
z2dσ =

∫∫

D
cos2 φ‖rθ × rφ‖dφdθ

=

∫ 2π

0

∫ π

0
cos2 φ sinφdφdθ

=
4π

3
.

Example 15.6.4. Evaluate
∫∫

S G(x, y, z)dσ over a football like surface S

x = cos u cos v, y = cos u sin v, z = u,−π
2
≤ u ≤ π

2
, 0 ≤ v ≤ 2π

when G(x, y, z) =
√

1− x2 − y2.

sol. Over the football surface the function G is given by

√

1− x2 − y2 =
√

1− cos2 u = | sinu|.

The surface differential is (Ref. Example 15.5.13)

dσ = cos u
√

1 + sin2 u dudv.

Hence

∫∫

S

√

1− x2 − y2dσ =

∫ 2π

0

∫ π/2

−π/2
| sinu| cos u

√

1 + sin2 ududv

= 2

∫ 2π

0

∫ π/2

0
sinu cos u

√

1 + sin2 ududv(w = 1 + sin2 u)

=

∫ 2π

0

∫ 2

1

√
wdwdv

= 2π · 2
3
w3/2|21 =

4π

3
(2
√
2− 1).

Example 15.6.5. Evaluate
∫∫

S

√

x(1 + 2z)dS where S = {z = y2/2, x, y ≥
0, x+ y ≤ 1}.
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sol. This is an integral over a graph of a function. Let z = g(x, y) = y2/2

so that the surface differential is

dσ =
√

g2x + g2y + 1dxdy =
√

y2 + 1dxdy.

The surface integral is

∫∫

S

√

x(1 + 2z)
√

y2 + 1dxdy =

∫ 1

0

∫ 1−x

0

√
x(y2 + 1)dydx

=

∫ 1

0

√
x((1− x) +

1

3
(1− x)3)dx =

284

945
.

Orientation

As in the case of line integral, the surface integral also has the notion of

direction. First we need to define the orientation of a surface S. It depends

on the particular parametrization.

Definition 15.6.6 (Oriented Surface). An orientable surface is a two sided

surface with one side specified as outside(or positive side). For orientable sur-

face, there are two possible normal vectors at each point, i.e, two unit normal

vectors n1 and n2, where n1 = −n2. Each of these normal vector can be

associated with an orientation. There are nonorientable surfaces.(Example:

Möbius strip)

clockwise

counter-clockwise
−n1

n2S

1
2

3
4

5

6
7

8

9

Figure 15.26: Orientable surface with two sides and Möbius strip
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x

y

z

(
(

1 + u
2
cos t

2

)

cos t,
(

1 + u
2
cos t

2

)

sin t, u
2
sin t

2
)

x y

z

((a+ b cosφ) cos θ, (a+ b cos φ) sin θ, b sin φ)

Figure 15.27: Graph of Möbius strip and torus

Let r : D → R
3 represent an oriented surface. If n(r) is the unit normal to

S, then

n(r) = ± ru × rv
‖ru × rv‖

.

We choose a parametrization so that the sign is positive (orientation-preserving)

Example 15.6.7. The parametrization of sphere by spherical coordinate by

(ρ, φ, θ) is orientation-preserving. By changing the order of θ and φ, we can

get orientation-reversing parametrization.

Example 15.6.8 (Möbius strip: non-orientable surface). Consider the surface

given by the following :











x =
(

1 + v cos u
2

)

cos u

y =
(

1 + v cos u
2

)

sinu, 0 ≤ u ≤ 2π, −1
2 ≤ v ≤ 1

2

z = v sin u
2

.

Let u = u0. Then











x =
(

cos u0 cos
u0

2

)

v + cos u0

y =
(

sinu0 cos
u0

2

)

v + sinu0, −1
2 ≤ v ≤ 1

2

z =
(

sin u0

2

)

v

.

Orientation of a graph

Example 15.6.9. Let S be the graph of a function z = g(x, y). Usually, we

give the orientation of such surface by taking the positive side to be the side
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away from which n points. Then the unit normal is given by

n =
−gxi− gyj+ k

√

1 + (gx)
2 + (gy)

2
dxdy.

Surface Integrals of vector Fields

In this section we develop the notion of integral of a vector field over a surface.

Recall the line integral of a vector field has a physical interpretation:

Work. Similarly, the notion of integral of a vector field over a surface can be

interpreted as a Flux.

Assume the vector field F : V → R
3 represents the velocity of a fluid and

the parametrization r : D → V ⊂ R
3 describes the shape of the net. Then the

surface integral
∫∫

r(D)F ·ndσ is the amount of fluid that passes through

the surface (per unit time).

We now define the surface integral of F over a surface S:

Definition 15.6.10.
∫∫

S
F · n dS.

In other word, the surface integral of F on a surface S is the surface integral

of normal projection of F to the surface S.

Since n = ru × rv/‖ru × rv‖ is the unit normal vector to the surface,

∫∫

S
F · n dσ =

∫∫

D
F · n‖ru × rv‖dudv

=

∫∫

D
F · ru × rv

‖ru × rv‖
‖ru × rv‖ dudv

=

∫∫

D
F · (ru × rv) dudv

:=

∫∫

S=r(D)
F · dσ.

Here

dσ = n dσ = (ru × rv) dudv (15.23)

is the vector version of surface element dσ given in the Definition 15.6.1, but

different in that a normal vector is attached.

Example 15.6.11. Find the flux of F = yzi+ xj− z2k through the surface
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S given by

y = x2, 0 ≤ x ≤ 1, 0 ≤ z ≤ 4.

sol. We can parameterize the surface using (x, z). r = xi+ x2j+ zk. So

rx = i− 2xj, rz = k

rx × rz = 2xi− j

n =
2xi− j√
4x2 + 1

.

On the surface

F = yzi+ xj− z2k = x2zi+ xj− z2k.

Hence

F · n =
1√

4x2 + 1
(x2z · 2x− x)

=
2x3z − x√
4x2 + 1

,

∫∫

r(D)
F · ndσ =

∫ 4

0

∫ 1

0

2x3z − x√
4x2 + 1

‖rx × rz‖dxdz

=

∫ 4

0

∫ 1

0
(2x3z − x)xdz

= 2.

or directly, we can integrate

∫∫

S
F · ndσ =

∫∫

D
(x2zi+ xj− z2k) · (2xi− j)dxdz =

∫∫

D
2x3z − xdxdz.

Example 15.6.12 (Spherical coordinate). Let S be the unit sphere parame-

terized by

r(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), (0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π).

Compute
∫∫

S r · dσ, where r = xi+ yi+ zk denotes the position vector.
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sol. We see

rφ = cosφ cos θi+ cosφ sin θj− sinφk,

rθ = − sinφ sin θi+ sinφ cos θj,

rφ × rθ = sinφ(cos θ sinφi+ sin θ sinφj+ cosφk).

Hence r · dσ = r · (rφ × rθ)dφ dθ = sinφdφdθ and

∫∫

r(D)
r · dσ =

∫ 2π

0

∫ π

0
sinφdφdθ = 4π.

Surface integrals of vector fields over an implicit surface G(x, y, z) =

0

The unit normal vector to the surface S : G(x, y, z) = 0 is

n =
∇G
|∇G| .

Hence

∫∫

S
F · ndσ =

∫∫

R
F · ∇G

|∇G|
|∇G|

|∇G · p|dA =

∫∫

R
F · ∇G

|∇G · p|dudv,

where p = i, j or k is the normal to R and ∇F · p 6= 0.

Surface Integral of vector fields over Graphs

Suppose S is the graph of z = g(x, y). We parameterize the surface S by

r(x, y) = (x, y, g(x, y)) and compute

rx = i+ gxk, ry = j+ gyk.

Hence

rx × ry = −(gx)i− (gy)j+ k

and we see

∫∫

S
F · dσ =

∫∫

D
F · (rx × ry)dxdy =

∫∫

D
[F1(−gx) + F1(−gy) + F3] dxdy.
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dS

F

r(u,v)
U=r(D)

Figure 15.28: Area of shadow region and flux across S

Physical Interpretation of Surface Integrals

Consider the parallelepiped determined by three vectors F, ru∆u and rv∆v.

(See figure 15.28.) Its volume is

F · (ru∆u× rv∆v) = F · (ru × rv)∆u∆v.

If F is the velocity of a fluid, the volume is the amount of fluid flowing out of

the surface per unit time. Hence

∫∫

S
F · ndσ =

∫∫

S
F · dσ

is the net quantity of fluid to flow across the surface per unit time, i.e, the

rate of fluid flow. It is also called flux of F across S.

Example 15.6.13 (Heat flow). Let T denote the temperature at a point.

Then

∇T =
∂T

∂x
i+

∂T

∂y
j+

∂T

∂z
k

represents the temperature gradient and heat “flows” with the vector field



260 CHAPTER 15. INTEGRAL OF VECTOR FIELDS

S

Figure 15.29: Water through a pipe and a surface S

−k∇T .

Example 15.6.14. Suppose temperature on a sphere S : x2 + y2 + z2 = 1 is

T = x2 + y2 + z2. Find the total heat flux across S if k = 1.

sol. We have heat flow F = −∇T = −2(xi+ yj+ zk) = −2r and the unit

normal vector to S is n = (x, y, z) = r. Hence

∫∫

S
F · dσ =

∫∫

S
(−2r · n)dσ = −2

∫∫

S
dS = −8π.

Example 15.6.15 (Gauss Law). The flux of an electric field E over a closed

surface S is the net charge Q contained in the surface. Namely,

∫∫

S
E · dσ = Q.

Suppose E = En(constant multiple of the unit normal vector) then

∫∫

S
E · dσ =

∫∫

S
EdS = Q = E · A(S).

So E = Q
A(S) and if S is sphere of radius R then

E =
Q

4πR2
. (15.24)

Example 15.6.16. Given a disk lying on the plane z = 12 described by

z = 12, x2 + y2 ≤ 25,
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compute
∫∫

S r · dσ where r = xi+ yj+ zk.

sol. We see

rx × ry = i× j = k.

So r · (rx × ry) = z and

∫∫

S
r · dσ =

∫∫

D
zdxdy = 12A(D) = 300π.

Mass and Moment for very thin shells

Imagine a very thin object like, drums, dome of a stadium. These materials

can be treat like surfaces (having no thickness). Mass and moment for these

thin shells can e computed as before.

The total mass M =

∫∫

S
δdS.

The moment about coord. plane

Myz =

∫∫

S
xδ dσ, Mzx =

∫∫

S
yδ dσ, Mxy =

∫∫

S
zδ dσ.

The moment of inertia about coord. axis

Ix =

∫∫

S
(y2 + z2)δ dσ, Iy =

∫∫

S
(x2 + z2)δ dσ, Iz =

∫∫

S
(x2 + y2)δ dσ

Example 15.6.17. Find the center of mass of a thin hemisphere shell of

radius a and density δ.

sol. We see shell is described by

f(x, y, z) = x2 + y2 + z2 = a2, z ≥ 0.

The symmetry tells us x̄ = ȳ = 0. To compute z̄, we need Mxy/M . The mass

is
∫∫

S
δ dσ = δA(S) = 2πa2δ.
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x
y

z

x

y

z

Figure 15.30: Hemisphere and part of a cone

|∇f | = |2xi+ 2yj+ 2zk| = 2
√

x2 + y2 + z2 = 2a

|∇f · k| = |2z| = 2z

dσ =
|∇f |

|∇f · k| =
a

z
dA.

Mxy =

∫∫

S
zδdσ = δ

∫∫

S
z
a

z
dA = δπa3

z̄ =
Mxy

M
=
a

2
.

Example 15.6.18. Find the center of mass of a thin shell of density δ = 1/z2

cut from the cone z =
√

x2 + y2 by the plane z = 1 and z = 2.

sol. The symmetry tells us x̄ = ȳ = 0.

We see the cone is described by parametrization x = r cos θ, y = r sin θ, z =

r, i.e.,

r(r, θ) = r cos θi+ r sin θj+ rk, 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π

and |rr × rθ| =
√
2r.(early)

To compute z̄, we need Mxy/M . The mass is

M =

∫∫

S
δ dσ =

∫ 2π

0

∫ 2

1

1

r2

√
2rdrdθ

=
√
2

∫ 2π

0
[ln r]21dθ

= 2π
√
2 ln 2.
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Mxy =

∫∫

S
zδdσ =

∫ 2π

0

∫ 2

1

1

r2
r
√
2rdrdθ

=
√
2

∫ 2π

0

∫ 2

1
drdθ = 2π

√
2

z̄ =
Mxy

M
=

1

ln 2
.

Summary

(1) Given a parameterized surface r(u, v)

(a) Surface integral of a scalar function f :

∫∫

r(D)
fdσ =

∫∫

D
f(r(u, v))‖ru × rv‖dudv

(b) Scalar surface element:

dσ = ‖ru × rv‖dudv

(c) Integral of a vector field:

∫∫

r(D)
F · dσ =

∫∫

D
F(r(u, v)) · (ru × rv) dudv =

∫∫

S
(F · n) dσ

(d) Vector surface element:

dσ = (ru × rv) dudv = n dσ

(2) When the surface is given by a graph z = g(x, y)

(a) Integral of a scalar f :

∫∫

S
fdσ =

∫∫

D
f(x, y, g(x, y))

√

(gx)
2 + (gy)

2 + 1 dxdy

(b) Scalar surface element:

dσ =
dx dy

cos θ
=

√

(gx)
2 + (gy)

2 + 1 dxdy
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(c) Integral of a vector field:

∫∫

S

F · dσ =

∫∫

D
(−F1gx − F2gy + F3) dxdy

(d) Vector surface element:

dσ = n dσ = (−gxi− gyj+ k) dxdy

(3) On the sphere x2 + y2 + z2 = R2

(a) Scalar surface element:

dσ = R2 sinφdφdθ

(b) Vector surface element:

dσ = (xi+ yj+ zk)R sinφdφdθ = rR sinφdφdθ = nR2 sinφdφdθ

15.7 Stokes’ Theorem

In R
2, the vector form of Green’s theorem gives the relation between the line

integral of a vector field on a simple closed curve to the integral of the curl of

the vector on the domain having the curve as boundary.

Stokes’ theorem is the generalization of Green’s theorem to the surface

lying in R
3: Consider a simple closed curve lying in R

3 and a surface having

the curve as boundary: Caution: there are many surfaces having the same

curve as boundary. But as long as the vector fields are C1 in a large region

containing the curve and the surface, any surface play the same role.

Recall : the curl of F = F1i+ F2j+ F3k is

∇× F = curlF =
(∂F3

∂y
− ∂F2

∂z

)

i+
(∂F1

∂z
− ∂F3

∂x

)

j+
(∂F2

∂x
− ∂F1

∂y

)

k

=

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

∣

.
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∂S
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b

Figure 15.31: The direction of ∂S in the orientable Surface S

n

b

bb
b

bb
b

n

n

S

∂S

S

∂S

Figure 15.32: Orientation by right handed rule

Theorem 15.7.1 (Stokes’ theorem). Let S be a piecewise smooth oriented

surface. Suppose the boundary ∂S consists of finitely many piecewise C1 curve

with the same orientation with S. Let F =M i+N j+Pk be a C1-vector field

defined on S. Then

∫∫

S
(∇× F) · ndσ =

∫

∂S
F · dr.

For a 2D surface this reduces to the Green’s Theorem:

∫∫

S
(∇× F) · kdA =

∫∫

S

(∂N

∂x
− ∂M

∂y

)

dxdy =

∮

∂S
F · dr.

Corollary 15.7.2. If S1 and S2 are two surfaces having the same boundary,
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then
∫∫

S1

(∇× F) · ndσ =

∫∫

S2

(∇× F) · ndσ.

Proof. Polyhedral surface only!

First assume S is defined by C1-function z = f(x, y) on a two dimen-

sional region D (a region on which Green’s theorem holds). Then it can be

parameterized by










x = x

y = y

z = f(x, y),

for (x, y) in D. Recall the integral of a vector field G = G1 i+G2 j+G3 k over

S is defined by

∫∫

S
G · dσ =

∫∫

D

[

G1

(

−∂z
∂x

)

+G2

(

−∂z
∂y

)

+G3

]

dxdy. (15.25)

By (15.25)

∫∫

S
curlF · dσ =

∫∫

D

[(∂F3

∂y
− ∂F2

∂z

)

(

−∂z
∂x

)

+
(∂F1

∂z
− ∂F3

∂x

)

(

−∂z
∂y

)

+
(∂F2

∂x
− ∂F1

∂y

)]

dxdy.

On the other hand

∫

∂S
F · dr =

∫

c

F · dr =

∫

c

F1dx+ F2dy + F3dz.

Here c = F ◦ r is a parametrization of boundary curve ∂S obtained from a

parametrization of ∂D in positive direction. Assume ∂D has the orientation

induced by c. Then

∫

∂S
F · dr =

∫ b

a

(

F1
dx

dt
+ F2

dy

dt
+ F3

dz

dt

)

dt. (15.26)



15.7. STOKES’ THEOREM 267

By the chain rule
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

Substituting this into above

∫

∂S
F · dr =

∫ b

a

[(

F1 + F3
∂z

∂x

)

dx

dt
+

(

F2 + F3
∂z

∂y

)

dy

dt

]

dt

=

∫

c

(

F1 + F3
∂z

∂x

)

dx+

(

F2 + F3
∂z

∂y

)

dy (15.27)

=

∫

∂D

(

F1 + F3
∂z

∂x

)

dx+

(

F2 + F3
∂z

∂y

)

dy.

Applying Green’s theorem to (15.27) yields

∫∫

D

[(

∂(F2 + F3
∂z
∂y )

∂x
− ∂(F1 + F3

∂z
∂x)

∂y

)]

dxdy.

Now use chain rule keeping in mind that F1, F2, F3 are functions of x, y and z,

while z is again a function of x, y. (Here ∂F2

∂x has to be interpreted carefully.

For example, we let G(x, y) = F2(x, y, f(x, y)), and ∂F2

∂x is understood as
∂G
∂x . In other words, treat x, y as independent variables, while regarding z as

dependent variable.) Thus by chain rule, above integral becomes

∫∫

D

[(

∂F2

∂x
+
∂F2

∂z

∂z

∂x
+
∂F3

∂x

∂z

∂y
+
∂F3

∂z

∂z

∂x

∂z

∂y
+ F3

∂2z

∂x∂y

)

−
(

∂F1

∂y
+
∂F1

∂z

∂z

∂y
+
∂F3

∂y

∂z

∂x
+
∂F3

∂z

∂z

∂y

∂z

∂x
+ F3

∂2z

∂x∂y

)]

dA.

Because mixed partials are equal, the last two integrals cancel each other and

we obtain

∫∫

D

[(∂F3

∂y
− ∂F2

∂z

)

(

−∂z
∂x

)

+
(∂F1

∂z
− ∂F3

∂x

)

(

−∂z
∂y

)

+
(∂F2

∂x
− ∂F1

∂y

)]

dxdy

=

∫∫

S
curlF · dσ.

Example 15.7.3. Let S be smooth surface having an oriented simple closed
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curve C as boundary and let F = yezi+ xezj+ xyezk. Compute
∫

C F · dr.

curlF =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

yez xez xyez

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

By Stokes’ theorem,

∫

C
F · dr =

∫∫

S
curlF · dσ = 0.

Example 15.7.4. Verify Stoke’s theorem for the following case. Let S be

hemisphere x2 + y2 + z2 = 9, z ≥ 0 and let F = yi− xj.

The boundary of S is parameterized by r(θ) = 3 cos θi+ 3 sin θj, 0 ≤ θ ≤
2π. First we compute

∫

C F · dr.

dr = −3 sin θdθi+ 3cos θdθj

F · dr = −9 sin2 θdθ − 9 cos2 θdθ = −9dθ
∮

C
F · dr =

∫ 2π

0
−9dθ = −18π.

On the other hand,

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

y −x 0

∣

∣

∣

∣

∣

∣

∣

∣

= −2k

n =
xi+ yj+ zk
√

x2 + y2 + z2
=
xi+ yj+ zk

3

dσ =
|∇f |
∇f · kdA =

3

z
dA

∇× F · ndσ = −2z

3

3

z
dA = −2dA

∫∫

S
∇× F · ndσ =

∫∫

x2+y2≤9
−2dA = −18π.

Example 15.7.5. Compute the circulation around C in Example above using

the disk of radius 3 in the xy plane centered at the origin(instead of hemi-

sphere).

sol.



15.7. STOKES’ THEOREM 269

As before ∇× F = −2k and n = k. So

∇× F · ndσ = −2k · kdA = −2dA

and

∫∫

S
∇× F · ndσ =

∫∫

x2+y2≤9
−2dA = −18π(the same)

This is easier!

Example 15.7.6. Calculate the circulation of F = (x2 − y)i + 4zj + x2k

around the circle C where the plane z = 2 meets the cone z =
√

x2 + y2,

counterclockwise. (In two ways)

sol. One way is to directly compute the circulation (Easy, skip it). But

another way is to use Stokes’ theorem on the given surface. This make things

worse!!! (see book Example 4, p. 1019)

Example 5 of book 13th version. However, we can use a flat disc z = 2

having the same curve C as the boundary. On that disc n = k and ∇× F =

−4i− 2xj+ k. ∇×F · n = 1. So by Stokes theorem,

∮

C
F · dr =

∫∫

S
∇× F · ndσ =

∫∫

x2+y2≤4
1dA = 4π.

Example 15.7.7. Example 6 of book. Consider a surface S formed by hyper-

bolic paraboloid z = y2−x2 lying inside the cylinder of radius one around z axis
and the boundary curve C. (Fig 15.33) Compute

∮

C F·dr for F = yi−xj+x2k.
(assume normal vector has positive k component on S)

sol. First we find the boundary curve C. Since it is the intersection of the

hyperbolic paraboloid z = y2 − x2 with the cylinder r = 1, we can use

r(t) = cos ti+ sin tj+ (sin2 t− cos2 t)k

We calculate the circulation of F = yi− xj+ x2k around the boundary curve

C.
dr

dt
= − sin ti+ cos tj+ (4 sin t cos t)k
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x

y

z

n
C

Figure 15.33: Surface z = y2 − x2, x2 + y2 ≤ 1 for Example 15.7.7

and on the curve r the vector field is

F = sin ti− cos tj+ cos2 tk

∫ 2π

0
F · dr

dt
dt =

∫ 2π

0

(

− sin2 t− cos2 t+ 4 sin t cos3 t
)

dt

=

∫ 2π

0

(

4 sin t cos3 t− 1
)

dt = −2π

However, the use of Stokes’ theorem for this problem make it worse, terrible!!!

Example 15.7.8. Verify the Stokes’ theorem when F = (x2 + y)i + (x2 +

2y)j+ 2z3k and C : x2 + y2 = 4, z = 2.

sol. Show that
∫

C F·ds = −4π(easy). Let S be the disk {(x, y, z) : x2+y2 =
4, z = 2}. If n is the unit normal to S, then n = k and

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x2 + y x2 + 2y 2z3

∣

∣

∣

∣

∣

∣

∣

∣

= (0− 0)i− (0− 0)j+ (2x− 1)k = (2x− 1)k.



15.7. STOKES’ THEOREM 271

Hence

∫∫

S
(∇× F) · dσ =

∫∫

S
(∇× F) · ndσ

=

∫∫

S
(2x− 1)k · kdσ =

∫ 2

−2

∫

√
4−y2

−
√

4−y2
(2x− 1)dxdy

= −2

∫ 2

−2

√

4− y2dy = −4π =

∫

C
F · ds.

Example 15.7.9. Evaluate

∫

C
−y3dx+ x3dy − z3dz

where C is the intersection of the cylinder x2+y2 = 1 and plane x+y+z = 1.

sol. Let F = −y3i + x3j − z3k. Then above integral is
∫

C F · dr. If we

consider any reasonable surface S having C as boundary, we can use Stokes’

theorem with curlF = 3(x2 + y2)k. Let us assume S is the surface defined by

x+y+z = 1, x2+y2 ≤ 1. A parametrization of S is given by r = (u, v, 1−u−v).
We need to compute

dσ = (ru × rv)dudv = (i− k)× (j− k)dudv = (i+ j+ k)dudv.

Hence

∫

C
F · dr =

∫∫

S
curlF · dσ =

∫∫

D
3(x2 + y2)dxdy =

3π

2
.

Here the domain D is the set {(x, y)|x2 + y2 ≤ 1}.

Example 15.7.10. A surface S is defined by z = e−(x2+y2) for z ≥ 1/e. Let

F = (ey+z − 2y)i+ (xey+z + y)j+ ex+yk.

Evaluate
∫∫

S ∇× F · dσ.

sol. We see

∇× F = (ex+y − xey+z)i+ (ey+z − ex+y)j+ 2k
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and

N = 2xe−(x2+y2)i+ 2ye−(x2+y2)j+ k.

So direct computation of
∫∫

S ∇×F · dσ seems almost impossible. Now try to

use Stoke’s theorem. First parameterize the boundary by

x = cos t, y = sin t, z = 1/e.

Then

∫

C
F · dr =

∫

C
(esin t+1/e − 2 sin t, · · · , ecos t+sin t) · (− sin t, cos t, 0) dt

This again is very difficult! Now think of another way. Think of another

surface S′ which has the same boundary as S., i.e, let S′ be the unit disk

x2 + y2 ≤ 1, z = 1/e. Then n = k and hence

∫∫

S
∇× F · dσ =

∫∫

S′

∇× F · ndσ =

∫∫

S′

2dσ = 2π.

Curl as circulation - paddle wheel interpretation

n

∂Sρ

ρPSρ
b

Figure 15.34: Circulation attains maximum when Sρ ⊥ n

Suppose F represent the velocity of a fluid. Consider a disk Sρ centered

at P with radius ρ having normal vector n (fig 15.34). Then the circulation

around the disk Sρ is
∫

∂Sρ

F · dr.
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By Stokes’ theorem,

∫

∂Sρ

F · dr =

∫∫

Sρ

(∇× F) · ndσ. (15.28)

Here ∂Sρ has the orientation according to n. We have by MVT

∫∫

Sρ

∇× F · ndσ = [∇×F(Q) · n(Q)]πρ2

for some point Q in Sρ. Hence dividing equation (15.28)by πρ2 we have

lim
ρ→0

1

πρ2

∫

∂Sρ

F · dr = lim
ρ→0

1

πρ2

∫∫

Sρ

(∇× F) · ndσ

= lim
ρ→0

(∇× F) · n(Q)

= (∇× F) · n(P ).

The circulation will attain its maximum value when the normal vector to the

plane is parallel to ∇×F. Thus the normal component of the curl at P is the

circulation density.(Note that the circulation density is, in the limit as ρ→ 0,

a 2D concept, while the curl of a vector field is a 3 D concept)

Example 15.7.11. A fluid rotates around the z-axis with velocity F =

ω(−yi + xj), where ω > 0 is the angular velocity. Find ∇ × F and relate

it to the circulation density.

sol.

∇× F = 2ωk.

Let S be the disk of radius ρ at the origin in the plane normal to ∇× F (in

this case the xy plane). By Stokes’ theorem, we have

∫

∂S
F · dr =

∫∫

S
(∇×F) · ndσ =

∫∫

S
2ωk · kdxdy = 2ωπρ2.

Thus

2ω =
1

πρ2

∫

∂S
F · dr = ∇× F · k.

This says that the circulation density is the normal component of ∇×F (i.e.,

n = k)
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Example 15.7.12. Use Stokes’ theorem to compute
∫

C F · dr if F = xzi +

xyj + 3xzk, and C is the boundary of S, which is the plane 2x + y + z = 2

portion in the first octant.

sol. The plane is the level surface of f(x, y, z) = 2x+ y + z = 2. Thus the

unit normal vector is

n =
∇f
|∇f | =

2i+ j+ k

|2i+ j+ k| =
1√
6
(2i+ j+ k)

∇× F = 2ωk.

By Stokes’ theorem, we have

∫

∂S
F · dr =

∫∫

S
(∇×F) · ndσ =

∫∫

S
2ωk · kdxdy = 2ωπρ2.

Thus

2ω =
1

πρ2

∫

∂S
F · dr = ∇× F · k.

∇× F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

xz xy 3xz

∣

∣

∣

∣

∣

∣

∣

= (x− 3z)j+ yk

= (x− 3(2− 2x− y))j+ yk = (7x+ 3y − 6)j+ yk

∇× F · n =
1√
6
(7x+ 4y − 6)

The surface area element is

dσ =
|∇f |

|∇f · k|dxdy =
√
6dxdy
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Thus the circulation is

∫

C
F · dr =

∫∫

S
(∇× F) · ndσ

=

∫ 1

0

∫ 2−2x

0

1√
6
(7x+ 4y − 6)

√
6dxdy

=

∫ 1

0

∫ 2−2x

0
(7x+ 4y − 6)dxdy = −1.

Example 15.7.13. Let S be the elliptic paraboloid z = x2+4y2 lying beneath

the plane z = 1. Define the normal vector n pointing upward.(i.e, having

positive k component) Find the flux of∇×F across S whenF = yi−xzj+xz2k.

sol. Let C : x2 + 4y2 = 1 be the boundary of S with correct orientation.

We parameterize it by

r(t) = cos ti+
1

2
sin tj+ k

Then

F(r(t)) =
1

2
sin ti− cos tj+ cos tk,

dr(t)

dt
= − sin ti+

1

2
cos tj.

Thus

b

b

x
y

z

1

z = x2 + 4y2

∫∫

S
∇× F · ndσ =

∫

C
F · dr

= −1

2

∫ 2π

0
(sin2 t+ cos2 t)dt

= −π.

Stokes’ theorem for surfaces with holes
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Important identity

curl grad f = ∇×∇f = 0 (15.29)

∇×∇f =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣

∣

∣

∣

∣

∣

∣

= (fzy − fyz)i+ (fxz − fzx)j+ (fyx − fxy)k

= 0

Conservative field and Stokes’ theorem

Recall :F is said to be conservative if
∫

C F · dr = 0 for every closed curve.

Equivalently, by Stokes’ theorem, F is conservative if ∇× F = 0 in a simply

connected region. Note this fact is consistent with the Stokes’ theorem:

∫

∂S
F · dr =

∫∫

S
(∇× F) · ndσ.

15.8 Divergence Theorem

We define the divergence of a vector field F as

divF = ∇ · F =
∂M

∂x
+
∂N

∂y
+
∂P

∂z

Physical meaning of divergence: Expansion or compression of a material.

Theorem 15.8.1. [Gauss’ Divergence Theorem] Let Ω be an elementary

region in R
3 and ∂Ω consists of finitely many oriented piecewise smooth closed

surfaces. Let F be a C1-vector field on a region containing Ω. Then

∫∫

∂Ω
F · ndσ =

∫∫∫

Ω
divFdV.

The flux of a vector field F across Ω is equal to the integral of divF in Ω.

Example 15.8.2. S is the unit sphere x2+y2+z2 = 1 and F = 2xi+y2j+z2k.

Find
∫∫

S F · ndS.
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sol. Let Ω be the region inside S. By Gauss theorem, it holds that

∫∫

S
F · ndσ =

∫∫∫

Ω
divFdV.

Since divF = ∇ · (2xi+ y2j+ z2k) = 2(1 + y + z), the rhs is

2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV + 2

∫∫∫

Ω
ydV + 2

∫∫∫

Ω
zdV.

By symmetry, we have

∫∫∫

Ω
ydV =

∫∫∫

Ω
zdV = 0.

Hence

∫∫

S
F · ndσ = 2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV =

8

3
π.

Example 15.8.3. Find the flux of F = xyi+ yzj+ xzk through the box cut

from the first octant by the planes x = 1, y = 1, z = 1.

sol. Let Ω be the region inside S. By Gauss theorem, it holds that

∫∫

S
F · ndσ =

∫∫∫

Ω
divFdV.

Since divF = ∇ · (xyi+ yzj+ xzk) = x+ y + z, the rhs is

∫∫∫

Ω
(x+ y + z)dV =

∫ 1

0

∫ 1

0

∫ 1

0
(x+ y + z)dxdydz =

3

2
.

Proof. (of Divergence Theorem) Suppose Ω is an elementary region of type 4

(a convex region like a ball bounded by graphs of two functions:

S1 : z = f1(x, y), (x, y) ∈ Rxy

S2 : z = f2(x, y), (x, y) ∈ Rxy,

with f1(x, y) ≤ f2(x, y), see fig 15.35. The unit normal vector n = n1i+n2j+
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n2

n1

S2 : z = f2(x, y)

S1 : z = f1(x, y)

z

x

y
x

y

z

n

α β

γ

Angles between axes and normal

Figure 15.35: Region of type 1

n3k satisfies

n1 = n · i = cosα

n2 = n · j = cos β

n3 = n · k = cos γ.

Let F =M i+N j+ Pk. Then the surface integral is

∫∫

∂Ω
(F · n)dσ =

∫∫

∂Ω
(M i+N j+ Pk) · ndσ

=

∫∫

∂Ω
M cosαdσ +

∫∫

∂Ω
N cos βdσ +

∫∫

∂Ω
P cos γdσ,

On the other hand,

∫∫∫

Ω
divFdV =

∫∫∫

Ω

∂M

∂x
dV +

∫∫∫

Ω

∂N

∂y
dV +

∫∫∫

Ω

∂P

∂z
dV.

If we show the following the proof will be complete.

∫∫

∂Ω
P i · ndσ =

∫∫

∂Ω
P cosαdσ =

∫∫∫

Ω

∂P

∂x
dV, (15.30)

∫∫

∂Ω
Qj · ndσ =

∫∫

∂Ω
P cos βdσ =

∫∫∫

Ω

∂Q

∂y
dV, (15.31)

∫∫

∂Ω
Rk · ndσ =

∫∫

∂Ω
P cos γdσ =

∫∫∫

Ω

∂R

∂z
dV. (15.32)
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First we shall prove (15.32). Since

dσ =
dx dy

cos γ
,

we have

∫∫

∂Ω
P cos γdσ =

∫∫

S2

P cos γdσ +

∫∫

S1

P cos γdσ (15.33)

=

∫∫

D
[R(x, y, f2(x, y)) −R(x, y, f1(x, y))]dxdy. (15.34)

=

∫∫

D

(

∫ z=f2(x,y)

z=f1(x,y)

∂R

∂z
dz

)

dxdy =

∫∫∫

Ω

∂R

∂z
dV. (15.35)

The identities (15.30) and (15.31) can be similarly shown.

Theorem 15.8.4. [Divergence of curl ] Let F be a C2 vector field defined

on a region containing Ω. Then

div (curlF) = ∇ · (∇× F) = 0.

Proof.

∇× F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

= (
∂F3

∂y
− ∂F2

∂z
)i+ (

∂F1

∂z
− ∂F3

∂x
)j+ (

∂F2

∂x
− ∂F1

∂y
)k

divF = 0

Example 15.8.5. Show Gauss’ theorem holds for F = xi + yj + zk in Ω :

x2 + y2 + z2 ≤ a2.

sol. First compute divF = ∇ · F,

divF =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3.

So
∫∫∫

Ω
(divF)dV =

∫∫∫

Ω
3 dV = 3

(4

3
πa3
)

= 4πa3.

To compute the surface integral, we need to find the unit normal n on ∂Ω.
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Since ∂Ω is the level set of f(x, y, z) = x2+y2+z2−a2, we see the unit normal

vector to ∂Ω is

n =
∇f

||∇f || =
2(xi+ yj+ zk)
√

4(x2 + y2 + z2)
=
xi+ yj+ zk

a
.

So when (x, y, z) ∈ ∂Ω,

F · n =
x2 + y2 + z2

a
=
a2

a
= a

and
∫∫

∂Ω
F · ndσ =

∫∫

∂Ω
a dσ = a(4πa2) = 4πa3.

Hence
∫∫∫

Ω
(divF)dV = 4πa3 =

∫∫

∂Ω
F · ndσ.

and Gauss’ theorem holds.

Example 15.8.6. Let Ω be the region given by x2 + y2 + z2 ≤ 1. Find
∫∫

∂Ω(x
2 + 4y − 5z)dσ by Gauss’ theorem.

sol. To use Gauss’ theorem, we need a vector field F = F1i+F2j+F3k such

that F ·n = x2+4y−5z. Since the unit normal vector is n = xi+yj+zk, one

such obvious choice is F = xi+4j−5k. Hence we have divF = 1+0+(−0) = 1.

Now by Gauss theorem

∫∫

∂Ω
(x2 + 4y − 5z)dσ =

∫∫

∂Ω
(xi+ 4j− 5k) · ndσ

=

∫∫

∂Ω
F · ndσ =

∫∫∫

Ω
divFdV

=

∫∫∫

Ω
1 dV =

4

3
π.

Example 15.8.7. Let Ω be the region satisfying 0 < b2 ≤ x2 + y2 + z2 ≤ a2.

Find the flux of the vector field F = (xi + yj + zk)/ρ3, ρ =
√

x2 + y2 + z2

across the boundary of Ω.

sol. On the boundary of Ω, n = ±(xi+ yj+ zk)/ρ. Hence F · n = ±(xi+
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yj+ zk),

∫∫

∂Ω
F · ndσ =

∫∫

Sa

F · ndσ −
∫∫

Sb

F · ndσ

∫∫

Sa

F · ndσ =

∫∫

ρ=a

1

ρ2
dσ = 4π.

Since this value is independent of a,

∫∫

∂Ω
F · ndσ = 4π − 4π = 0.

To use Gauss’ theorem, we compute that ∇ ·F = 0. Hence Now by Gauss

theorem

∫∫

∂Ω
F · ndσ =

∫∫∫

Ω
divFdV = 0.

Generalizing Gauss’ divergence theorem

Divergence theorem holds for more general regions. The idea is the break the

region into subregions of type 4.

Divergence as flux per unit Volume

As we have seen before that divF(P ) is the rate of change of total flux at P

per unite volume. Let Ωρ be a ball of radius ρ center at P . Then for some Q

in Ωρ,
∫∫

∂Ωρ

F · ndσ =

∫∫∫

Ωρ

divFdV = divF(Q) · Vol(Ωρ).

Dividing by the volume we get

divF(Q) =
1

Vol(Ωρ)

∫∫

∂Ωρ

F · ndσ. (15.36)

Taking the limit, we see

lim
ρ→0

1

Vol(Ωρ)

∫∫

∂Ωρ

F · ndσ = divF(P ). (15.37)
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Now we can give a physical interpretation: If F is the velocity of a fluid, then

divF(P ) is the rate at which the fluid flows out per unit volume.

bcbc

divF(P ) > 0

P
.

divF(P ) < 0

P
.

Figure 15.36:

If divF(P ) > 0, we say P is a source and if divF(P ) < 0, it is called sink

of F(fig 15.36).

If divF = 0 then by Gauss theorem, the total flux of F through any

closed surface S is
∫∫

S F · dσ, which is zero. Thus we call this vector field

incompressible.

Example 15.8.8. Find
∫∫

S f · dσ, where F = xy2i+ x2yj+ yk and S is the

surface of the the cylindrical region x2 + y2 = 1 bounded by the planes z = 1

and z = −1.

sol. Let W denote the solid region given above. By divergence theorem,

∫∫∫

W
divF dV =

∫∫∫

W
(x2 + y2)dxdydz

=

∫ 1

−1

(
∫∫

x2+y2≤1
(x2 + y2)dxdy

)

dz

= 2

∫∫

x2+y2≤1
(x2 + y2)dxdy.

Now by polar coordinate,

2

∫∫

x2+y2≤1
(x2 + y2)dxdy = 2

∫ 2π

0

∫ 1

0
r3drdθ = π.
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Gauss’ Law

Now apply Gauss’ theorem to a region with a hole and get an important result

in physics:

The electric field created by a point charge q at the origin is

E(x, y, z) =
q

4πǫ0

xi+ yj+ zk

r3
=

q

4πǫ0

r

r3
, r =

√

x2 + y2 + z2

Theorem 15.8.9. (Gauss’ Law) Let M be a region in R
3 and O /∈ ∂M .

Then
∫∫

∂M
E · ndσ =

q

4πǫ0

∫∫

∂M

r · n
r3

dσ =







0 if O /∈M ,

q
ǫ0

if O ∈M.

n

n

O
ε

M

∂M
∂B

b

b

b

Figure 15.37: Unit outward normal vector n to M and Gauss’ Law

Proof. First suppose O /∈ M . Then r/r3 is a C1-vector field on M and ∂M .

One can easily show ∇ · (r/r3) = 0 for r 6= 0. Hence

∫∫

∂M

r · n
r3

dσ =

∫∫∫

M
∇ ·
( r

r3

)

dV = 0.

Thus we have the result.

Next, if O ∈ M , r/r3 is not continuous on M . Then we remove small

ball B of radius ε near O(fig 15.37). Let W be the region M\B. Then the

boundary of W is S = ∂B ∪ ∂M , where the normal vector to B is opposite

to the usual direction. Again we see in ∇ · (r/r3) = 0 in W . Hence by Gauss

theorem
∫∫

S

r · n
r3

dσ =

∫∫∫

W
∇ ·
( r

r3

)

dV = 0.
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Since
∫∫

S

r · n
r3

dσ =

∫∫

∂M

r · n
r3

dσ +

∫∫

∂B

r · n
r3

dσ,

we have
∫∫

∂M

r · n
r3

dσ = −
∫∫

∂B

r · n
r3

dσ.

Now on ∂B(a sphere of radius ε), we know n = −r/r and r = ε. Hence

−
∫∫

∂B

r · n
r3

dσ =

∫∫

∂B

ε2

ε4
dσ =

1

ε2

∫∫

∂B
dσ.

Since
∫∫

∂B dσ = 4πε2, we have
∫∫

∂M r · n/r3dσ = 4π.

Several versions of Green’s theorem:

Tangential form

∮

C
F ·Tds =

∫∫

R
∇× F · kdA

Stokes’ theorem

∮

∂S
F ·Tds =

∫∫

S
∇× F · ndσ

Normal form

∮

C
F · nds =

∫∫

R
∇ · FdA

Divergcenc theorem

∫∫

∂Ω
F · ndσ =

∫∫∫

Ω
∇ · FdV


